Math 241 Sample Problems for Midterm Exam

Question 1 Don't forget quadric surfaces.
Question 2 Let $f(x, y)=x \sin (y / x)$. Find the partial derivatives: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial y \partial x}$
Question 3 Find and sketch the domain of the function $f(x, y)=\frac{5}{\sqrt{10-2 y^{2}-x^{2}}}$.
Question 4 Let $w=f(u, v)$ be a function whose derivatives of all orders exist. Suppose that $\frac{\partial^{2} f}{\partial u^{2}}(0,2)=0$, $\frac{\partial^{2} f}{\partial u^{2}}(3,0)=-3, \frac{\partial^{2} f}{\partial u \partial v}(0,2)=2, \frac{\partial^{2} f}{\partial u \partial v}(3,0)=3, \frac{\partial^{2} f}{\partial v^{2}}(0,2)=1, \frac{\partial^{2} f}{\partial v^{2}}(3,0)=-1$. If $u=y+e^{2 x}$ and $v=x y$, what is the value of $\frac{\partial^{2} w}{\partial y^{2}}$ evaluated at the point $(x, y)=(0,2)$.

Question 5 Find the direction in which $f(x, y)=x^{2}+\cos x y$ increases most rapidly at the point $(1, \pi / 2)$. What is the rate at which f changes in that direction? What is the equation of the tangent plane at the point ($1, \pi / 2$)?

Question 6 Find the critical points of the function

$$
f(x, y)=x^{4}-x^{2} y+\frac{3}{4} y^{2}-2 y+5
$$

and determine all relative maximum, relative minimum, and saddle points.
Question 7 Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z)=x-2 y+5 z$ on the sphere $x^{2}+y^{2}+z^{2}=30$.

Question 8 Evaluate the following double integral:

$$
\int_{0}^{2} \int_{y / 2}^{1} y e^{x^{3}} d x d y
$$

Question 9 Find the volume of the solid in space which lies below the surface $z=3+\cos y$ and above the region in the $x y$-plane bounded by the curves $x=\pi, y=0$, and $y=2 x$ by evaluating an appropriate double integral.

Question 10 Find the volume determined by $z \leq 6-x^{2}-y^{2}$ and $z \geq \sqrt{x^{2}+y^{2}}$.

